Article ID Journal Published Year Pages File Type
472776 Computers & Mathematics with Applications 2011 8 Pages PDF
Abstract

In this paper a novel two-dimensional lattice Boltzmann model (LBM) is developed for uniform channel flows. The axial velocity is solved from a momentum diffusion equation over the cross-sectional plane. An extrapolation boundary condition is also introduced to enhance the no-slip boundary in the momentum equation. This boundary treatment can also be applied to LBM simulations of other diffusion processes. The algorithm and boundary treatment are validated by simulations of steady Poiseuille and pulsatile Womersley flows in circular pipes. The numerical convergence and accuracy are comparable to those of existing models. Moreover, comparison with general three-dimensional lattice Boltzmann simulations demonstrates the advantages of our two-dimensional model, including lower computational resource requirements (memory and time), easier boundary treatment for arbitrary cross-sectional shapes, and no velocity constraint. These features are attractive for practical applications with uniform channel flows.

Related Topics
Physical Sciences and Engineering Computer Science Computer Science (General)
Authors
, ,