Article ID Journal Published Year Pages File Type
479266 European Journal of Operational Research 2007 14 Pages PDF
Abstract

This research presents a new constrained optimization approach for solving systems of nonlinear equations. Particular advantages are realized when all of the equations are convex. For example, a global algorithm for finding the zero of a convex real-valued function of one variable is developed. If the algorithm terminates finitely, then either the algorithm has computed a zero or determined that none exists; if an infinite sequence is generated, either that sequence converges to a zero or again no zero exists. For solving n-dimensional convex equations, the constrained optimization algorithm has the capability of determining that the system of equations has no solution. Global convergence of the algorithm is established under weaker conditions than previously known and, in this case, the algorithm reduces to Newton’s method together with a constrained line search at each iteration. It is also shown how this approach has led to a new algorithm for solving the linear complementarity problem.

Related Topics
Physical Sciences and Engineering Computer Science Computer Science (General)
Authors
, ,