| Article ID | Journal | Published Year | Pages | File Type |
|---|---|---|---|---|
| 4943856 | Fuzzy Sets and Systems | 2017 | 13 Pages |
Abstract
In this paper, the notion of a prefilter generated by a nonempty subset of an EQ-algebra is introduced and a characterization of it is obtained. It is proved that the set of all prefilters of an EQ-algebra is an algebraic lattice and it is a Brouwerian lattice for an âEQ-algebra. Furthermore, it is shown that the set of all principal prefilters of an âEQ-algebra is a sublattice of the lattice of prefilters. Then by defining an implication between two prefilters, it is determined that the lattice of prefilters is a Heyting algebra, for an âEQ-algebra. Finally, the EQ-algebras for which the lattice of prefilters is a Boolean algebra are given.
Keywords
Related Topics
Physical Sciences and Engineering
Computer Science
Artificial Intelligence
Authors
Neda Mohtashamnia, Lida Torkzadeh,
