Article ID Journal Published Year Pages File Type
494478 Neurocomputing 2016 13 Pages PDF
Abstract

Community detection in social networks is a fundamental task of complex network analysis. Community is usually regarded as a functional unit. Networks in real world more or less have overlapping community structure while traditional community detection algorithms assume that one vertex can only belong to one community. This paper proposes an efficient overlapping community detection algorithm named LED (Loop Edges Delete). LED algorithm is based on Structural Clustering, which converts structural similarity between vertices to weights of network. The evaluations of the LED algorithm are conducted both from classical networks from literature and C-DBLP, which is a huge and real-life co-author social network in China. The results show that LED is superior to other methods in accuracy, efficiency, comparing with FastModurity and GN algorithm.

Related Topics
Physical Sciences and Engineering Computer Science Artificial Intelligence
Authors
, , , , , , ,