Article ID | Journal | Published Year | Pages | File Type |
---|---|---|---|---|
4946123 | Knowledge-Based Systems | 2017 | 32 Pages |
Abstract
This paper presents an unsupervised approach to solve semantic ambiguity based on the integration of the Personalized PageRank algorithm with word-sense frequency information. Natural Language tasks such as Machine Translation or Recommender Systems are likely to be enriched by our approach, which includes semantic information that obtains the appropriate word-sense via support from two sources: a multidimensional network that includes a set of different resources (i.e. WordNet, WordNet Domains, WordNet Affect, SUMO and Semantic Classes); and the information provided by word-sense frequencies and word-sense collocation from the SemCor Corpus. Our series of results were analyzed and compared against the results of several renowned studies using SensEval-2, SensEval-3 and SemEval-2013 datasets. After conducting several experiments, our procedure produced the best results in the unsupervised procedure category taking SensEval campaigns rankings as reference.
Related Topics
Physical Sciences and Engineering
Computer Science
Artificial Intelligence
Authors
Yoan Gutiérrez, Sonia Vázquez, Andrés Montoyo,