Article ID Journal Published Year Pages File Type
4946797 Neural Networks 2017 14 Pages PDF
Abstract
This paper addresses the complete stability of delayed recurrent neural networks with Gaussian activation functions. By means of the geometrical properties of Gaussian function and algebraic properties of nonsingular M-matrix, some sufficient conditions are obtained to ensure that for an n-neuron neural network, there are exactly 3k equilibrium points with 0≤k≤n, among which 2k and 3k−2k equilibrium points are locally exponentially stable and unstable, respectively. Moreover, it concludes that all the states converge to one of the equilibrium points; i.e., the neural networks are completely stable. The derived conditions herein can be easily tested. Finally, a numerical example is given to illustrate the theoretical results.
Related Topics
Physical Sciences and Engineering Computer Science Artificial Intelligence
Authors
, , ,