Article ID Journal Published Year Pages File Type
4946971 Neurocomputing 2017 26 Pages PDF
Abstract
Recent advances in image-based object recognition have exploited object proposals to speed up the detection process by reducing the search space. In this paper, we present a novel idea that utilizes true objectness and semantic image filtering (retrieved within the convolutional layers of a Convolutional Neural Network) to propose effective region proposals. Information learned in fully convolutional layers is used to reduce the number of proposals and enhance their localization by producing highly accurate bounding boxes. The greatest benefit of our method is that it can be integrated into any existing approach exploiting edge-based objectness to achieve consistently high recall across various intersection over union thresholds. Experiments on PASCAL VOC 2007 and ImageNet datasets demonstrate that our approach improves two existing state-of-the-art models with significantly high margins and pushes the boundaries of object proposal generation.
Related Topics
Physical Sciences and Engineering Computer Science Artificial Intelligence
Authors
, , ,