Article ID Journal Published Year Pages File Type
4947017 Neurocomputing 2017 7 Pages PDF
Abstract
The automatic identification and diagnosis of rice diseases are highly desired in the field of agricultural information. Deep learning is a hot research topic in pattern recognition and machine learning at present, it can effectively solve these problems in vegetable pathology. In this study, we propose a novel rice diseases identification method based on deep convolutional neural networks (CNNs) techniques. Using a dataset of 500 natural images of diseased and healthy rice leaves and stems captured from rice experimental field, CNNs are trained to identify 10 common rice diseases. Under the 10-fold cross-validation strategy, the proposed CNNs-based model achieves an accuracy of 95.48%. This accuracy is much higher than conventional machine learning model. The simulation results for the identification of rice diseases show the feasibility and effectiveness of the proposed method.
Related Topics
Physical Sciences and Engineering Computer Science Artificial Intelligence
Authors
, , , , ,