Article ID Journal Published Year Pages File Type
4947307 Neurocomputing 2017 15 Pages PDF
Abstract
In this paper we evaluate the use of the machine learning algorithms Support Vector Machines (SVM), K-Nearest Neighbors (KNN) and Classification and Regression Trees (CART) to identify non-spontaneous saccades in clinical electrooculography tests. We propose a modification to an adaptive threshold estimation algorithm for detecting signal impulses without the need for any manually pre-established parameters. Data mining tasks such as feature selection and model tuning were performed, obtaining very efficient models using only 3 attributes: amplitude deviation, absolute response latency and relative latency. The models were evaluated with signals recorded from subjects affected by Spinocerebellar Ataxia type 2 (SCA2). Results obtained by the algorithm show accuracies over 98%, recalls over 98% and precisions over 95% for the three models evaluated.
Related Topics
Physical Sciences and Engineering Computer Science Artificial Intelligence
Authors
, , , , , , , , ,