Article ID | Journal | Published Year | Pages | File Type |
---|---|---|---|---|
4947592 | Neurocomputing | 2017 | 16 Pages |
Abstract
In this paper, a hybrid learning approach, which combines the extreme learning machine (ELM) with a new switching delayed PSO (SDPSO) algorithm, is proposed for the problem of the short-term load forecasting (STLF). In particular, the input weights and biases of ELM are optimized by a new developed SDPSO algorithm, where the delayed information of locally best particle and globally best particle are exploited to update the velocity of particle. By testing the proposed SDPSO-ELM in a comprehensive manner on a tanh function, this approach obtain better generalization performance and can also avoid adding unnecessary hidden nodes and overtraining problems. Moreover, it has shown outstanding performance than other state-of-the-art ELMs. Finally, the proposed SDPSO-ELM algorithm is successfully applied to the STLF of power system. Experiment results demonstrate that the proposed learning algorithm can get better forecasting results in comparison with the radial basis function neural network (RBFNN) algorithm.
Related Topics
Physical Sciences and Engineering
Computer Science
Artificial Intelligence
Authors
Nianyin Zeng, Hong Zhang, Weibo Liu, Jinling Liang, Fuad E. Alsaadi,