Article ID Journal Published Year Pages File Type
4948355 Neurocomputing 2016 7 Pages PDF
Abstract
This paper proposed an improved adaptive-velocity self-organizing model as a prospective candidate in order to enhance high-speed convergence and accelerate convergence. Moreover, weights are assigned to reinforce convergence under super high-speed circumstances. Convergence performance is assessed via group polarization, convergence ratio and convergent time. As verified by numerical experiments, superior high-speed performance and fast convergence are achieved simultaneously in the improved adaptive-velocity model. The weighted adaptive model prominently improved super high-speed performance with short convergent time and low energy consumption. Then, the parameter space of the weighted adaptive flocking model is investigated.
Related Topics
Physical Sciences and Engineering Computer Science Artificial Intelligence
Authors
, , , , ,