Article ID Journal Published Year Pages File Type
4949825 Discrete Applied Mathematics 2017 10 Pages PDF
Abstract
The problems of counting independent sets, maximal independent sets, and independent perfect dominating sets are #P-complete for bipartite graphs, but can be solved in polynomial time for convex bipartite graphs, which are a subclass of bipartite graphs This paper studies these problems for tree convex bipartite graphs, which are a class of graphs between bipartite graphs and convex bipartite graphs. A bipartite graph G with bipartition (X   Y) is called tree convex, if a tree T defined on X exists, such that for every vertex y in Y, the neighbors of y form a subtree of T If the associated tree T is simply a path, then G is just a convex bipartite graph. This paper first proves that the problems of counting independent sets, maximal independent sets, and independent perfect dominating sets remain #P-complete for tree convex bipartite graphs even when the associated tree T is only a comb or a star. This paper then presents polynomial-time algorithms to solve these problems for tree convex bipartite graphs when the associated tree T is restricted to a triad, which consists of three paths with one common endpoint.
Related Topics
Physical Sciences and Engineering Computer Science Computational Theory and Mathematics
Authors
, ,