Article ID | Journal | Published Year | Pages | File Type |
---|---|---|---|---|
4950750 | Information and Computation | 2016 | 21 Pages |
Abstract
A graph G is considered conditional k-edge-fault hamiltonian-connected if, after k faulty edges are removed from G, under the assumption that each node is incident to at least three fault-free edges, a hamiltonian path exists between any two distinct nodes in the resulting graph. This paper focuses on the conditional edge-fault hamiltonian-connectivity of a wide class of interconnection networks called restricted hypercube-like networks (RHLs). An n-dimensional RHL (RHLn) is proved to be conditional (2nâ7)-edge-fault hamiltonian-connected for nâ¥5. The technical theorem proposed in this paper is then applied to show that several multiprocessor systems, including n-dimensional crossed cubes, n-dimensional twisted cubes for odd n, n-dimensional locally twisted cubes, n-dimensional generalized twisted cubes, n-dimensional Möbius cubes, and recursive circulants G(2n,4) for odd n, are all conditional (2nâ7)-edge-fault hamiltonian-connected.
Related Topics
Physical Sciences and Engineering
Computer Science
Computational Theory and Mathematics
Authors
Sun-Yuan Hsieh, Chia-Wei Lee, Chien-Hsiang Huang,