Article ID Journal Published Year Pages File Type
4951984 Theoretical Computer Science 2017 14 Pages PDF
Abstract
An abelian square is the concatenation of two words that are anagrams of one another. A word of length n can contain at most Θ(n2) distinct factors, and there exist words of length n containing Θ(n2) distinct abelian-square factors, that is, distinct factors that are abelian squares. This motivates us to study infinite words such that the number of distinct abelian-square factors of length n grows quadratically with n. More precisely, we say that an infinite word w is abelian-square-rich if, for every n, every factor of w of length n contains, on average, a number of distinct abelian-square factors that is quadratic in n; and uniformly abelian-square-rich if every factor of w contains a number of distinct abelian-square factors that is proportional to the square of its length. Of course, if a word is uniformly abelian-square-rich, then it is abelian-square-rich, but we show that the converse is not true in general. We prove that the Thue-Morse word is uniformly abelian-square-rich and that the function counting the number of distinct abelian-square factors of length 2n of the Thue-Morse word is 2-regular. As for Sturmian words, we prove that a Sturmian word sα of angle α is uniformly abelian-square-rich if and only if the irrational α has bounded partial quotients, that is, if and only if sα has bounded exponent.
Related Topics
Physical Sciences and Engineering Computer Science Computational Theory and Mathematics
Authors
, , ,