Article ID | Journal | Published Year | Pages | File Type |
---|---|---|---|---|
4959093 | Computers & Operations Research | 2017 | 7 Pages |
Abstract
The Closest String Problem (CSP) calls for finding an n-string that minimizes its maximum Hamming distance from m given n-strings. Recently, integer linear programs (ILP) have been successfully applied within heuristics to improve efficiency and effectiveness. We consider an ILP for the binary case (0-1 CSP) that updates the previous formulations and solve it by branch-and-cut. The method separates in polynomial time the first closure of {0,12}-Chvátal-Gomory cuts and can either be used stand-alone to find optimal solutions, or as a plug-in to improve heuristics based on the exact solution of reduced problems. Due to the parity structure of the right-hand side, the impressive performances obtained with this method in the binary case cannot be directly replicated in the general case.
Related Topics
Physical Sciences and Engineering
Computer Science
Computer Science (General)
Authors
Claudio Arbib, Mara Servilio, Paolo Ventura,