Article ID Journal Published Year Pages File Type
4967127 Journal of Computational Physics 2017 14 Pages PDF
Abstract
In this paper, it is shown that three-dimensional stochastic Maxwell equations with multiplicative noise are stochastic Hamiltonian partial differential equations possessing a geometric structure (i.e. stochastic multi-symplectic conservation law), and the energy of system is a conservative quantity almost surely. We propose a stochastic multi-symplectic energy-conserving method for the equations by using the wavelet collocation method in space and stochastic symplectic method in time. Numerical experiments are performed to verify the excellent abilities of the proposed method in providing accurate solution and preserving energy. The mean square convergence result of the method in temporal direction is tested numerically, and numerical comparisons with finite difference method are also investigated.
Related Topics
Physical Sciences and Engineering Computer Science Computer Science Applications
Authors
, , , ,