Article ID | Journal | Published Year | Pages | File Type |
---|---|---|---|---|
4967136 | Journal of Computational Physics | 2017 | 30 Pages |
Abstract
Implicit schemes are popular methods for the integration of time dependent PDEs such as hyperbolic and parabolic PDEs. However the necessity to solve corresponding linear systems at each time step constitutes a complexity bottleneck in their application to PDEs with rough coefficients. We present a generalization of gamblets introduced in [62] enabling the resolution of these implicit systems in near-linear complexity and provide rigorous a-priori error bounds on the resulting numerical approximations of hyperbolic and parabolic PDEs. These generalized gamblets induce a multiresolution decomposition of the solution space that is adapted to both the underlying (hyperbolic and parabolic) PDE (and the system of ODEs resulting from space discretization) and to the time-steps of the numerical scheme.
Related Topics
Physical Sciences and Engineering
Computer Science
Computer Science Applications
Authors
Houman Owhadi, Lei Zhang,