Article ID | Journal | Published Year | Pages | File Type |
---|---|---|---|---|
4967435 | Journal of Computational Physics | 2017 | 17 Pages |
In this work, the shock-fitting technique is further developed on unstructured dynamic meshes. The shock wave is fitted and regarded as a special boundary, whose boundary conditions and boundary speed (shock speed) are determined by solving Rankine-Hugoniot relations. The fitted shock splits the entire computational region into subregions, in which the flows are free from shocks and flow states are solved by a shock-capturing code based on arbitrary Lagrangian-Eulerian algorithm. Along with the motion of the fitted shock, an unstructured dynamic meshes algorithm is used to update the internal node's position to maintain the high quality of computational meshes. The successful applications prove the present shock-fitting to be a valid technique.