Article ID Journal Published Year Pages File Type
4967968 Journal of Computational Physics 2016 10 Pages PDF
Abstract
By splitting magnetic field into two components (internal plus external), we derived an extended formulation of the HLLD Riemann solver for numerical simulation of magnetohydrodynamics (MHD). This new solver is backward compatible with the standard HLLD Riemann solver when the external component of the magnetic field is zero. Moreover, the solver is more robust than the standard HLLD solver in applications to low plasma β (the ratio between thermal and magnetic pressures) cases, where the thermal pressure may become negative from subtracting the kinetic and large magnetic energy from the large total energy density in a Godunov type numerical scheme. Our numerical tests show that the extended HLLD solver works well for the cases of magnetic field decomposition, and maintains high resolution similar to the standard HLLD.
Related Topics
Physical Sciences and Engineering Computer Science Computer Science Applications
Authors
, , ,