Article ID Journal Published Year Pages File Type
4971488 Microelectronics Reliability 2017 9 Pages PDF
Abstract
This article presents the experimental thermal and hydraulic performances of heat sinks with various channel diameter for cooling electronic components. A heat sink with the length and width of 60 mm and total height of 16 mm fabricated from aluminum material. The heat sink is designed with four circular minichannels and three different values of hydraulic diameter of channel (D = 4 mm, D = 6 mm and D = 8 mm). The minichannel heat sink is heated with a uniform base heat flux. Also, numerical simulation of the problem is performed using Finite Volume Method (FVM). Comparing the experimental and numerical results show that numerical results are in a good agreement with experimental data. The variation of channel diameter affects the heat transfer and pressure drop characteristics of the circular shaped minichannel heat sink. The experimental results show that the increase of channel diameter reduces the pressure drop in the heat sink. Also, the minichannel heat sink with a hydraulic diameter of 4 mm has a much lower thermal resistance than the minichannel heat sinks with a hydraulic diameter of 6 mm and 8 mm. Furthermore, the optimization is done to have the maximum heat transfer coefficient and minimum of pressure drop along the heat sink.
Related Topics
Physical Sciences and Engineering Computer Science Hardware and Architecture
Authors
, , ,