Article ID Journal Published Year Pages File Type
4977890 Advances in Engineering Software 2017 12 Pages PDF
Abstract
The paper deals with modeling fluid saturated porous media subject to large deformation. An Eulerian incremental formulation is derived using the problem imposed in the spatial configuration in terms of the equilibrium equation and the mass conservation. Perturbation of the hyperelastic porous medium is described by the Biot model which involves poroelastic coefficients and the permeability governing the Darcy flow. Using the material derivative with respect to a convection velocity field we obtain the rate formulation which allows for linearization of the residuum function. For a given time discretization with backward finite difference approximation of the time derivatives, two incremental problems are obtained which constitute the predictor and corrector steps of the implicit time-integration scheme. Conforming mixed finite element approximation in space is used. Validation of the numerical model implemented in the SfePy code is reported for an isotropic medium with a hyperelastic solid phase. The proposed linearization scheme is motivated by the two-scale homogenization which will provide the local material poroelastic coefficients involved in the incremental formulation.
Related Topics
Physical Sciences and Engineering Computer Science Software
Authors
, ,