Article ID | Journal | Published Year | Pages | File Type |
---|---|---|---|---|
497837 | Computer Methods in Applied Mechanics and Engineering | 2015 | 31 Pages |
We present in this paper a rigorous theoretical framework to show stability, convergence and accuracy of improved edge-based and face-based smoothed finite element methods (bES-FEM and bFS-FEM) for nearly-incompressible elasticity problems. The crucial idea is that the space of piecewise linear polynomials used for the displacements is enriched with bubble functions on each element, while the pressure is a piecewise constant function. The meshes of triangular or tetrahedral elements required by these methods can be generated automatically. The enrichment induces a softening in the bilinear form allowing the weakened weak (W2W2) procedure to produce a high-quality solution, free from locking and that does not oscillate. We prove theoretically that both methods confirm the uniform inf–sup and convergence conditions. Four numerical examples are given to validate the reliability of the bES-FEM and bFS-FEM.