Article ID Journal Published Year Pages File Type
499256 Computer Methods in Applied Mechanics and Engineering 2008 16 Pages PDF
Abstract

A very efficient methodology to carry out reliability-based optimization of linear systems with random structural parameters and random excitation is presented. The reliability-based optimization problem is formulated as the minimization of an objective function for a specified reliability. The probability that design conditions are satisfied within a given time interval is used as a measure of the system reliability. Approximation concepts are used to construct high quality approximations of dynamic responses in terms of the design variables and uncertain structural parameters during the design process. The approximations are combined with an efficient simulation technique to generate explicit approximations of the reliability measures with respect to the design variables. In particular, an efficient importance sampling technique is used to estimate the failure probabilities. The number of dynamic analyses as well as reliability estimations required during the optimization process are reduced dramatically. Several example problems are presented to illustrate the effectiveness and feasibility of the suggested approach.

Related Topics
Physical Sciences and Engineering Computer Science Computer Science Applications
Authors
, , ,