Article ID Journal Published Year Pages File Type
5000245 Control Engineering Practice 2017 12 Pages PDF
Abstract
This paper introduces a systematic approach to design and tune the airflow velocity control system for use during fire situations in road tunnels. The proposed approach is focused on road tunnels with a complex structure; long tunnels with connected ramps (entrances and exits), where the controller design can be challenging and time consuming. Such tunnels usually have many sections where a fire can be localized, and this makes the control task difficult. Our approach is based on a simplified one-dimensional simulation model of a tunnel, which includes all the important factors influencing the airflow dynamics of a tunnel. The proportional-integral (PI) controllers are tuned based on the Skogestad Internal Model Control (SIMC) method, which requires a simple model for the process dynamics. The case study is the airflow velocity control in the Blanka tunnel complex in Prague, Czech Republic, which is the largest city tunnel in Central Europe. The results of the paper show how to improve the control algorithm in real operation and how to use the proposed systematic approach for future tunnels.
Related Topics
Physical Sciences and Engineering Engineering Aerospace Engineering
Authors
, ,