Article ID Journal Published Year Pages File Type
500048 Computer Methods in Applied Mechanics and Engineering 2006 14 Pages PDF
Abstract

Interfacial damage nucleation and evolution in reinforced elastomers is modeled using a three-dimensional updated Lagrangian finite element formulation based on the perturbed Petrov–Galerkin method for the treatment of nearly incompressible behavior. The progressive failure of the particle–matrix interface is modeled by a cohesive law accounting for mode mixity. The meso-scale is characterized by a unit cell, which contains particles dispersed in a homogenized blend. A new, fully implicit and efficient finite element formulation, including consistent linearization, is presented. The proposed finite element model is capable of predicting the non-homogeneous meso-fields and damage nucleation and propagation along the particle–matrix interface. Simple deformations involving an idealized solid rocket propellant are considered to demonstrate the algorithm.

Related Topics
Physical Sciences and Engineering Computer Science Computer Science Applications
Authors
, ,