Article ID | Journal | Published Year | Pages | File Type |
---|---|---|---|---|
504350 | Computerized Medical Imaging and Graphics | 2011 | 17 Pages |
We present a tile-based approach for producing clinically relevant probability maps of prostatic carcinoma in histological sections from radical prostatectomy. Our methodology incorporates ensemble learning for feature selection and classification on expert-annotated images. Random forest feature selection performed over varying training sets provides a subset of generalized CIEL*a*b* co-occurrence texture features, while sample selection strategies with minimal constraints reduce training data requirements to achieve reliable results. Ensembles of classifiers are built using expert-annotated tiles from training images, and scores for the probability of cancer presence are calculated from the responses of each classifier in the ensemble. Spatial filtering of tile-based texture features prior to classification results in increased heat-map coherence as well as AUC values of 95% using ensembles of either random forests or support vector machines. Our approach is designed for adaptation to different imaging modalities, image features, and histological decision domains.