Article ID Journal Published Year Pages File Type
510322 Computers & Structures 2011 12 Pages PDF
Abstract

In this work, we compare different mesh moving techniques for monolithically-coupled fluid-structure interactions in arbitrary Lagrangian–Eulerian coordinates. The mesh movement is realized by solving an additional partial differential equation of harmonic, linear-elastic, or biharmonic type. We examine an implementation of time discretization that is designed with finite differences. Spatial discretization is based on a Galerkin finite element method. To solve the resulting discrete nonlinear systems, a Newton method with exact Jacobian matrix is used. Our results show that the biharmonic model produces the smoothest meshes but has increased computational cost compared to the other two approaches.

Related Topics
Physical Sciences and Engineering Computer Science Computer Science Applications
Authors
,