Article ID Journal Published Year Pages File Type
5111789 Omega 2017 24 Pages PDF
Abstract
In general cases, to find the exact upper bound on the minimal total cost of the transportation problem with varying demands and supplies is an NP-hard problem. In literature, there are only two approaches with several shortcomings to solve the problem. In this paper, the problem is formulated as a bi-level programming model, and proven to be solvable in a polynomial time if the sum of the lower bounds for all the supplies is no less than the sum of the upper bounds for all the demands; and a heuristic algorithm named TPVDS-A based on genetic algorithm is developed as an efficient and robust solution method of the model. Computational experiments on benchmark and new randomly generated instances show that the TPVDS-A algorithm outperforms the two existing approaches.
Related Topics
Social Sciences and Humanities Business, Management and Accounting Strategy and Management
Authors
, , , ,