Article ID Journal Published Year Pages File Type
5129390 Journal of Multivariate Analysis 2017 16 Pages PDF
Abstract

Markov chain Monte Carlo (MCMC) is a simulation method commonly used for estimating expectations with respect to a given distribution. We consider estimating the covariance matrix of the asymptotic multivariate normal distribution of a vector of sample means. Geyer (1992) developed a Monte Carlo error estimation method for estimating a univariate mean. We propose a novel multivariate version of Geyer's method that provides an asymptotically valid estimator for the covariance matrix and results in stable Monte Carlo estimates. The finite sample properties of the proposed method are investigated via simulation experiments.

Related Topics
Physical Sciences and Engineering Mathematics Numerical Analysis
Authors
, ,