Article ID Journal Published Year Pages File Type
513694 Engineering Analysis with Boundary Elements 2006 14 Pages PDF
Abstract

We analyze electrostatic deformations of rectangular, annular circular, solid circular, and elliptic micro-electromechanical systems (MEMS) by modeling them as elastic membranes. The nonlinear Poisson equation governing their deformations is solved numerically by the meshless local Petrov–Galerkin (MLPG) method. A local symmetric augmented weak formulation of the problem is introduced, and essential boundary conditions are enforced by introducing a set of Lagrange multipliers. The trial functions are constructed by using the moving least-squares approximation, and the test functions are chosen from a space of functions different from the space of trial solutions. The resulting nonlinear system of equations is solved by using the pseudoarclength continuation method. Presently computed values of the pull-in voltage and the maximum pull-in deflection for the rectangular and the circular MEMS are found to agree very well with those available in the literature; results for the elliptic MEMS are new.

Related Topics
Physical Sciences and Engineering Computer Science Computer Science Applications
Authors
, , ,