Article ID Journal Published Year Pages File Type
514279 Finite Elements in Analysis and Design 2008 14 Pages PDF
Abstract

In this paper, a new fractal finite element based method for continuum-based shape sensitivity analysis for a crack in a homogeneous, isotropic, and two-dimensional linear-elastic body subject to mixed-mode (modes I and II) loading conditions, is presented. The method is based on the material derivative concept of continuum mechanics, and direct differentiation. Parametric study is carried out to examine the effects of the similarity ratio, the number of transformation terms, and the integration order on the quality of the numerical solutions. Three numerical examples which include both mode-I and mixed-mode problems, are presented to calculate the first-order derivative of the JJ-integral or stress-intensity factors. The results show that first-order sensitivities of JJ-integral or stress-intensity factors obtained using the proposed method are in excellent agreement with the reference solutions obtained using the finite-difference method for the structural and crack geometries considered in this study.

Related Topics
Physical Sciences and Engineering Computer Science Computer Science Applications
Authors
, ,