Article ID Journal Published Year Pages File Type
5148628 Journal of Power Sources 2017 8 Pages PDF
Abstract
Solid oxide electrolysis cells with La0·75Sr0·25Cr0·5Mn0·5O3-δ (LSCM) cathode can electrolyze CO2 to generate chemical fuels. Nevertheless, the cathode performance is limited by its electrocatalytic activity. In this work, metal nanoparticles including Ni, Cu and NiCu metals are successfully impregnated in LSCM electrode to improve its activity. XRD, XPS, SEM and TEM together confirm the metal nanocatalysts are homogeneously distributed on LSCM backbone and therefore create active electrochemical interface for CO2 splitting. Electrical properties of LSCM with impregnated metal nanoparticles are investigated and correlated to electrode performances. Electrochemical measurements show that the NiCu-LSCM demonstrates the optimum performance without degradation after operation for ∼100 h and ∼10 redox cycles. It is believed that the enhanced performance of CO2 electrolysis may be attributed to the synergetic effect of metal nanocatalyst and LSCM ceramic electrode.
Related Topics
Physical Sciences and Engineering Chemistry Electrochemistry
Authors
, , , , ,