Article ID Journal Published Year Pages File Type
5148868 Journal of Power Sources 2017 9 Pages PDF
Abstract
The rhombohedral LiSn2(PO4)3 was prepared by solid-state method for the anode material of lithium-ion battery. The effect of pH value of hydrothermal reaction system on the morphology of SnO2 as the precursor of LiSn2(PO4)3 and the influence of heat-treatment procedure and conditions, such as the sintering temperature and time, on the property of LiSn2(PO4)3 were investigated. The purity, morphology, structure and size distribution of prepared LiSn2(PO4)3 were characterized respectively by X-ray diffraction (XRD), high-resolution transmission electron microscopy (HRTEM) and scanning electron microscopy (SEM) methods. The results demonstrate that the as-prepared LiSn2(PO4)3 particles exhibit rhombohedral single-crystal structure with an average particle size of 200 nm. The electrochemical measurement results reveal that the as-prepared LiSn2(PO4)3/C electrode exhibits the improved cycling stability and reversibility with a reversible discharge capacity of 448.6 mA h g−1 at 100 mA g−1 and better rate capability of 332.6 mA h g−1 at 500 mA g−1. The charge-discharge mechanism of LiSn2(PO4)3/C electrode was also investigated. According to the test results of cyclic voltammetry, the electrode process includes not only the intercalation and deintercalation of lithium ions in the LiSn2(PO4)3 particles, but also the surface pseudo-capacitive effect.
Related Topics
Physical Sciences and Engineering Chemistry Electrochemistry
Authors
, , , ,