Article ID Journal Published Year Pages File Type
5149046 Journal of Power Sources 2017 7 Pages PDF
Abstract
A thermally durable all-solid-state lithium ion battery composed of a complex hydride, oxide electrolytes, and LiNi1/3Mn1/3Co1/3O2 active material is developed. This battery exhibits a discharge capacity of 56 mAh g−1, and the tenth capacity retention ratio is 29% at 150 °C owing to the large contact resistance between the electrolyte layer and the composite positive electrode layer. This large contact resistance is reduced by introducing an adhesive layer comprised of a mixture of LiBH4 and LiNH2 that is easily melted by thermal treatment and fills the voids and pores at the interface between the two layers. As a result, repeated charge-discharge cycles are successfully demonstrated at 150 °C with a high discharge capacity and discharge capacity retention ratio. The first discharge capacity is enhanced to 114 mAh g−1 and the capacity retention ratio at the tenth cycle is improved to 71%. These results demonstrate that using an adhesive layer is an effective measure to reduce the contact resistance and thereby enhance the performance of the battery.
Related Topics
Physical Sciences and Engineering Chemistry Electrochemistry
Authors
, , , , ,