Article ID | Journal | Published Year | Pages | File Type |
---|---|---|---|---|
5149069 | Journal of Power Sources | 2017 | 8 Pages |
Abstract
Nano spinel bulk-like CoGa2O4 prepared via a facile hydrothermal method is used as a high efficient electrochemical catalyst in activated carbon (AC) air-cathode microbial fuel cell (MFC). The maximum power density of the modified MFC is 1911 ± 49 mW mâ2, 147% higher than the MFC of untreated AC cathode. Transmission electron microscope (TEM) and X-ray diffraction (XRD) exhibit the morphology and crystal structure of CoGa2O4. Rotating disk electrode (RDE) confirms the four-electron pathway at the cathode during the oxygen reduction reaction (ORR). Thermogravimetric analysis (TGA) and X-ray photoelectron spectroscopy (XPS) illustrate that the high rate oxygen vacancy exist in the CoGa2O4. The oxygen vacancy of CoGa2O4 plays an important role in catalytic activity. In a word, the prepared nano spinel bulk-like CoGa2O4 provides an alternative to the costly Pt in air-cathode for power output.
Related Topics
Physical Sciences and Engineering
Chemistry
Electrochemistry
Authors
Di Liu, Xiaoping Mo, Kexun Li, Yi Liu, Junjie Wang, Tingting Yang,