Article ID | Journal | Published Year | Pages | File Type |
---|---|---|---|---|
5149255 | Journal of Power Sources | 2017 | 9 Pages |
Abstract
The anode materials of MCFC require more investigations in order to boost performances at long term. In literature, many NiAl modified alloys have been proposed but not always enhanced cell performance and improved mechanical properties are achieved together. In this work, differently from previous literature, the use of Ti in a NiAl/Ti system is proposed as an effective strategy to enhance both mechanical and electrochemical properties. Results show that bending strength and stiffness increase whereas creep deformation under high pressure-temperature is lower, i.e. around 5-6%, compared to 7.5% of the standard benchmark. The preliminary cell tests carried out show also how the performance, in terms of current and voltage output, is better for anodes with Ti addition with a maximum power density of 165Â mWÂ cmâ2 at 300Â mAÂ cmâ2 for Ti 5% compared to 149Â mWÂ cmâ2 of Ni5Al at the same current density. Finally, the best electrochemical behavior is found for the Ti 5% sample as it achieved the lowest internal and charge transfer resistance at the end of tests. These results suggest that NiAl/Ti systems can be eligible anode materials and are worthy to be investigated more in order to attract a renewed interest for development of MCFCs.
Related Topics
Physical Sciences and Engineering
Chemistry
Electrochemistry
Authors
Domenico Frattini, Grazia Accardo, Angelo Moreno, Sung Pil Yoon, Jong Hee Han, Suk Woo Nam,