Article ID | Journal | Published Year | Pages | File Type |
---|---|---|---|---|
5149391 | Journal of Power Sources | 2017 | 9 Pages |
Abstract
An investigation of the morphology of lithium-cobalt-oxide (LCO) films for the production of energy dense, solid-state, thin-film batteries with cathodes in the 10 μm thickness range is described. It was found that, in order to achieve devices with over 80% charge utilization, capable of extended cycling, with cathodes greater than 5 μm, LCO film texture must be actively controlled to maintain orientations preferential to Li diffusion. It was found that the oxygen: argon ratio during sputtering of the cathode plays a critical role in determining the crystallographic texture of LCO films thicker than 5 μm. Specifically, LCO films deposited with an oxygen presence of as little as 4% in Ar showed no detectable (003) peak following anneal. Working cells were fabricated using texture-controlled 10 μm cathodes, exhibiting discharge capacities of 60 μAh/cm2-μm (600 μAh/cm2) at C/10, with greater than 95% capacity retention after 100 cycles at a C/5 discharge rate. Cells with 10 μm cathodes and un-controlled (predominantly (003)) texture were capable of achieving similar capacities, however their rate and cycling performance were severely diminished.
Related Topics
Physical Sciences and Engineering
Chemistry
Electrochemistry
Authors
Jason Trask, Abraham Anapolsky, Ben Cardozo, Eric Januar, Kylendra Kumar, Michael Miller, Roy Brown, Ramesh Bhardwaj,