Article ID Journal Published Year Pages File Type
5149661 Journal of Power Sources 2017 9 Pages PDF
Abstract
Due to their high theoretical capacity compared to that of state-of-the-art graphite-based electrodes, silicon electrodes have gained much research focus for use in the development of next generation lithium-ion batteries. However, a major drawback of silicon as an electrode material is that it suffers from particle fracturing due to huge volume expansion during electrochemical cycling, thus limiting commercialization of such electrodes. Understanding the role of material microstructure in electrode degradation will be instrumental in the design of stable silicon electrodes. Here, we demonstrate the application of synchrotron-based X-ray tomographic microscopy to capture and track microstructural evolution, phase transformation and fracturing within a silicon-based electrode during electrochemical lithiation.
Related Topics
Physical Sciences and Engineering Chemistry Electrochemistry
Authors
, , , , , , , , , ,