Article ID Journal Published Year Pages File Type
5150116 Journal of Power Sources 2016 11 Pages PDF
Abstract
The majority of existing battery models that simulate composite electrode behavior assume the binder as a linear elastic material due to lack of a thorough understanding of time-dependent mechanical behavior of binders. Here, thin films of polyvinylidene fluoride binder, prepared according to commercial battery manufacturing method, are subjected to standard monotonic, load-unload, and relaxation tests to characterize the time-dependent mechanical behavior. The strain in the binder samples is measured with the digital image correlation technique to eliminate experimental errors. The experimental data showed that for (charging/discharging) time scales of practical importance, polyvinylidene fluoride behaves more like an elastic-viscoplastic material as opposed to a visco-elastic material; based on this observation, a simple elastic-viscoplastic model, calibrated against the data is adopted to represent the deformation behavior of binder in a Si-based composite electrode; the lithiation/delithiation process of this composite was simulated at different C rates and the stress/strain behavior was monitored. It is observed that the linear elastic assumption of the binder leads to inaccurate results and the time-dependent constitutive behavior of the binder not only leads to accurate prediction of the mechanics but is an essential step towards developing advanced multi-physics models for simulating the degradation behavior of batteries.
Related Topics
Physical Sciences and Engineering Chemistry Electrochemistry
Authors
, , , ,