Article ID Journal Published Year Pages File Type
5150134 Journal of Power Sources 2016 7 Pages PDF
Abstract
Oxygen reduction reaction (ORR) electrocatalysts with high activity, low cost and good durability are crucial to promote the large-scale practical application of fuel cells. Particularly, iron carbide (Fe3C) supported on nitrogen-doped carbon has recently demonstrated compelling promise for ORR electrocatalysis. In this paper, we report the facile synthesis of mesoporous Fe/N-doped graphene with encapsulated Fe3C nanoparticles (Fe3C@Fe/N-graphene) and its superior ORR catalytic activity. This hybrid material was synthesized by the spontaneous oxidative polymerization of dopamine on graphene oxide (GO) sheets in the presence of iron ion, followed by thermal annealing in Argon (Ar) atmosphere. As-prepared material shows high ORR catalytic activity with overwhelming four-electron reduction pathway, long-term durability and high methanol tolerance in alkaline media. This work reports a facile method to synthesize promising ORR electrocatalysis with multiple components and hierarchical architecture, and may offer valuable insight into the underlying mechanism of Fe3C-boosted ORR activity of Fe/N doped carbon.
Related Topics
Physical Sciences and Engineering Chemistry Electrochemistry
Authors
, , ,