Article ID Journal Published Year Pages File Type
5150183 Journal of Power Sources 2016 8 Pages PDF
Abstract
In this paper, a study of the lithiation mechanism of micro-grain structured silicon anode is presented. Micro-grain amorphous silicon was deposited on special copper foil and it is shown that after several decades of galvanostatic cycles, it preserves its granular nature with minor degradation. In order to shed light on the lithiation mechanisms of the micro-grain silicon, Electrochemical Impedance Spectroscopy (EIS) was conducted on silicon half-cells at various State-of-Charge (SoC) and various discharging current values and the Solid-Electrolyte Interphase (SEI) RSEI and polarization resistance Rpol were determined. Results reveal that Rpol highly increases for cell voltages lower than 0.2 V and it strongly depends on the discharging C-rate. From X-ray Photoelectron Spectroscopy (XPS) measurements combined with surface sputtering, the existence of a LixSiyOz interlayer between SEI and silicon is confirmed, which is believed to play an important role to the lithium kinetics. Finally, combining our results, a lithiation mechanism of the micro-grain silicon anode is proposed.
Related Topics
Physical Sciences and Engineering Chemistry Electrochemistry
Authors
, , , , , ,