Article ID Journal Published Year Pages File Type
519929 Journal of Computational Physics 2014 14 Pages PDF
Abstract

We present a methodology that accelerates the classical Jacobi iterative method by factors exceeding 100 when applied to the finite-difference approximation of elliptic equations on large grids. The method is based on a schedule of over- and under-relaxations that preserves the essential simplicity of the Jacobi method. Mathematical conditions that maximize the convergence rate are derived and optimal schemes identified. The convergence rate predicted from the analysis is validated via numerical experiments. The substantial acceleration of the Jacobi method enabled by the current method has the potential to significantly accelerate large-scale simulations in computational mechanics, as well as other areas where elliptic equations are prominent.

Related Topics
Physical Sciences and Engineering Computer Science Computer Science Applications
Authors
, ,