Article ID Journal Published Year Pages File Type
520268 Journal of Computational Physics 2010 8 Pages PDF
Abstract

Smoothed particle dynamics refers to Smoothed Particle Hydrodynamics (SPH) when simulating macroscopic flows and to Smoothed Dissipative Particle Dynamics (SDPD) when simulating mesoscopic flows. When the considered flow is highly dissipative, this otherwise very attractive method faces a serious time-step limitation. This difficulty, known in literature as Schmidt number problem for Dissipative Particle Dynamics (DPD), prevents the application of SDPD for important cases of liquid micro-flows. In this paper we propose a splitting scheme which allows to increase significantly the admissible time-step size for SPH and SDPD. Macroscopic and mesoscopic validation cases, and numerical simulations of polymer in shear flows suggest that this scheme is stable and accurate, and therefore efficient simulations at Schmidt numbers of order O(106) are possible.

Related Topics
Physical Sciences and Engineering Computer Science Computer Science Applications
Authors
, , , ,