Article ID | Journal | Published Year | Pages | File Type |
---|---|---|---|---|
521263 | Journal of Computational Physics | 2006 | 28 Pages |
The goal of this paper is to investigate and develop a fast and robust algorithm for the solution of high-order accurate discontinuous Galerkin discretizations of non-linear systems of conservation laws on unstructured grids. Herein we present the development of a spectral hp-multigrid method, where the coarse “grid” levels are constructed by reducing the order (p) of approximation of the discretization using hierarchical basis functions (p-multigrid), together with the traditional (h-multigrid) approach of constructing coarser grids with fewer elements. On each level we employ variants of the element-Jacobi scheme, where the Jacobian entries associated with each element are treated implicitly (i.e., inverted directly) and all other entries are treated explicitly. The methodology is developed for the two-dimensional non-linear Euler equations on unstructured grids, using both non-linear (FAS) and linear (CGC) multigrid schemes. Results are presented for the channel flow over a bump and a uniform flow over a four element airfoil. Current results demonstrate convergence rates which are independent of both order of accuracy (p) of the discretization and level of mesh resolution (h).