Article ID Journal Published Year Pages File Type
522591 Journal of Computational Physics 2010 18 Pages PDF
Abstract

Artificial viscosity can be combined with a higher-order discontinuous Galerkin finite element discretization to resolve a shock layer within a single cell. However, when a non-smooth artificial viscosity model is employed with an otherwise higher-order approximation, element-to-element variations induce oscillations in state gradients and pollute the downstream flow. To alleviate these difficulties, this work proposes a higher-order, state-based artificial viscosity with an associated governing partial differential equation (PDE). In the governing PDE, a shock indicator acts as a forcing term while grid-based diffusion is added to smooth the resulting artificial viscosity. When applied to heat transfer prediction on unstructured meshes in hypersonic flows, the PDE-based artificial viscosity is less susceptible to errors introduced by grid edges oblique to captured shocks and boundary layers, thereby enabling accurate heat transfer predictions.

Related Topics
Physical Sciences and Engineering Computer Science Computer Science Applications
Authors
, ,