Article ID | Journal | Published Year | Pages | File Type |
---|---|---|---|---|
522591 | Journal of Computational Physics | 2010 | 18 Pages |
Artificial viscosity can be combined with a higher-order discontinuous Galerkin finite element discretization to resolve a shock layer within a single cell. However, when a non-smooth artificial viscosity model is employed with an otherwise higher-order approximation, element-to-element variations induce oscillations in state gradients and pollute the downstream flow. To alleviate these difficulties, this work proposes a higher-order, state-based artificial viscosity with an associated governing partial differential equation (PDE). In the governing PDE, a shock indicator acts as a forcing term while grid-based diffusion is added to smooth the resulting artificial viscosity. When applied to heat transfer prediction on unstructured meshes in hypersonic flows, the PDE-based artificial viscosity is less susceptible to errors introduced by grid edges oblique to captured shocks and boundary layers, thereby enabling accurate heat transfer predictions.