Article ID Journal Published Year Pages File Type
523517 Journal of Informetrics 2009 15 Pages PDF
Abstract

This paper treats document–document similarity approaches in the context of science mapping. Five approaches, involving nine methods, are compared experimentally. We compare text-based approaches, the citation-based bibliographic coupling approach, and approaches that combine text-based approaches and bibliographic coupling. Forty-three articles, published in the journal Information Retrieval, are used as test documents. We investigate how well the approaches agree with a ground truth subject classification of the test documents, when the complete linkage method is used, and under two types of similarities, first-order and second-order. The results show that it is possible to achieve a very good approximation of the classification by means of automatic grouping of articles. One text-only method and one combination method, under second-order similarities in both cases, give rise to cluster solutions that to a large extent agree with the classification.

Related Topics
Physical Sciences and Engineering Computer Science Computer Science Applications
Authors
, ,