Article ID Journal Published Year Pages File Type
541789 Microelectronics Journal 2013 4 Pages PDF
Abstract

Real time and accurate measurement of thermal conductivity of polymer composites with thermal conductive fillers challenges researchers in industrial application. Here, we present an in-situ measurement approach by embedding a LED or diode as a combined heat source and temperature sensor into the filled polymer and using the well-established transient measuring method based on forward voltage variation to determine the temperature response of the sensor in polymer. Numerical model fitting is applied to estimate the thermal conductivity of the polymer composites with different filler/polymer ratios. These findings are compared with other thermal conductivity test methods such as the laser flash method and the Modular Differential Scanning Calorimeter (MDSC). The proposed approach provides a quick way of measuring the thermal conductivity in relatively thin polymer composites and agrees well with the MDSC method. Another advantage is that it can work with the real samples made for the application in mind, so its results can be used directly.

Related Topics
Physical Sciences and Engineering Computer Science Hardware and Architecture
Authors
, , ,