Article ID Journal Published Year Pages File Type
542072 Microelectronics Journal 2011 4 Pages PDF
Abstract

A new phenomenon, for the first time, shows that radiation-induced body effect factor decrease in NMOS transistors is presented. The results indicate that body effect factor shift decreases as the total ionizing dose (TID) level increases in NMOS transistors, especially in the narrow-channel ones, which can be considered as one of the radiation-induced narrow-channel effect (RINCE). A first-order model is developed by applying charge conservation principle. Good agreement is obtained by comparing the modeling with experimental results. Finally, some implications to mitigate the RINCE effect are discussed.

Related Topics
Physical Sciences and Engineering Computer Science Hardware and Architecture
Authors
, , , , , , ,