Article ID Journal Published Year Pages File Type
542476 Microelectronics Journal 2009 5 Pages PDF
Abstract

Zinc oxide (ZnO) has recently attracted considerable attention because of its unique physical properties and its potential applications in the blue and UV spectral range. Up to now, ZnO-based heterostructures have mostly been grown in a c-orientation. The growth of non-polar layers along the a-direction [1 1 2¯ 0] has been proposed to avoid any built-in electric fields in the c-direction. Polar and non-polar quantum wells (QWs) embedded in (Zn, Mg)O barriers were grown on an optimized buffer. We compare the photoluminescence (PL) emission of a- and c-oriented QWs. From this comparison, we demonstrate that the QWs exhibit confinement but no indication of quantum confined Stark effect, contrary to what is observed in c-oriented structures. In the non-polar orientation, it is shown that the thermal quenching is not related to the thermal escape of excitons from the ZnO area, since the calculated activation energies are much lower.

Related Topics
Physical Sciences and Engineering Computer Science Hardware and Architecture
Authors
, , , , , , ,