Article ID Journal Published Year Pages File Type
542716 Microelectronics Journal 2006 7 Pages PDF
Abstract

A new approach was developed in this work to fabricate metallic nano-cantilevers using a one-mask process and a deep reactive ion etch (DRIE) technique. 40-nm-thick Al and 70-nm-thick Au cantilevers of lengths from 5 μm and widths in the range of 200–300 nm were fabricated on a silicon substrate. The silicon underneath the suspended beams was completely etched. Short Al nano-cantilevers were used to find local residual stress induced in rapid thermal oxidation and the oxidized spots according to the deflection profiles of the nano-cantilevers. The deflection profiles were determined with the aid of a scanning electron microscope (SEM). Compared with a single feedback in the existing cantilever-based static methods, i.e., the deflection of the open end of a cantilever, the whole deflection profile provides more information regarding the effect of surface stresses on a cantilever.

Related Topics
Physical Sciences and Engineering Computer Science Hardware and Architecture
Authors
, ,